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Two regularization methods, Tikhonov regularization and singular value discarding, are
used to improve the accuracy of reconstruction of acoustic source strength by inverse
techniques. In this paper, some methods are investigated for choosing the Tikhonov
regularization parameter and the singular values to be discarded. Of these, we concentrate
on the use of ordinary cross-validation and generalized cross-validation. These methods can
provide an appropriate regularization parameter without prior knowledge of either the
acoustic source strength or the contaminating measurement noise. Some experimental
results obtained using a randomly vibrating simply supported plate mounted in a ba%e are
presented to illustrate the performance of the methods for choosing the regularization
parameters.
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1. INTRODUCTION

In the reconstruction of acoustic source strength by inverse techniques, the accuracy of
reconstruction is largely determined by the conditioning of the matrix to be inverted. This
matrix can often be ill-conditioned. This can occur despite the choice of geometrical
arrangement of microphones being made to account for the behaviour of the condition
number of the acoustic transfer function matrix. This is described in full in reference [1]. For
example, when we wish to identify the contribution to the total acoustic "eld made by
a vibrating surface (e.g., a plate-like structure excited by dynamic forces) from the viewpoint
of a discrete inverse problem, this surface has to be discretized into a large number of small
elements each of which is regarded as an acoustic source. In this case, we need also a large
number of microphones, which is at least equal to the number of acoustic sources. However,
such a system can result in ill-conditioning because the condition number of the matrix to
be inverted increases as the dimension of this matrix increases. This ill-conditioning makes
the problem ill-posed. In the ill-conditioned problem, "nding a good estimate of acoustic
source strength by the least-squares method becomes problematic. This is because the e!ect
of measurement noise and/or modelling error appears in the reconstructed acoustic source
strength, giving a large deviation from the desired values [1]. For this reason, we
demonstrated in reference [1] that Tikhonov regularization and singular value discarding
could be used to enhance the accuracy of reconstruction of acoustic source strength. In this
case, the success of these regularization methods depends on the appropriate choice of the
Tikhonov regularization parameter and the singular values to be discarded.
022-460X/00/240669#37 $35.00/0 ( 2000 Academic Press
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This paper deals with the methods for choosing these values. We introduce the techniques
of ordinary cross-validation and generalized cross-validation for choosing the Tikhonov
regularization parameter and the singular values to be discarded. These methods have
mainly been applied in the "eld of statistical data analysis and image restoration (see
references [2,3] for example). The main advantage of these techniques is that they do not
require prior knowledge of the source strengths to be reconstructed or the contaminating
noise and thus they can be used in practical situations. The theoretical basis for these
methods are developed in order to obtain the formulae which enable the acoustic source
strengths to be recovered with improved accuracy.

In order to explore the main features of the theories presented, we undertake a series of
experiments in which we reconstruct the volume velocities of a randomly vibrating simply
supported plate mounted in a ba%e. The initial restoration of acoustic source strengths
is conducted for &&well conditioned'' problems. Finally, we explore the performance of
Tikhonov regularization and singular value discarding and incorporate the generalized
cross-validation technique for choosing the regularization parameter and the singular
values to be discarded when the inversion problem is very poorly conditioned.

2. METHODS FOR CHOOSING THE TIKHONOV REGULARIZATION
PARAMETER

2.1. INTRODUCTION

In reference [1], we showed that the Tikhonov regularized solution for the acoustic
source strength vector could be written as

q
R
"(HHH#bI)~1HHp; , (1)

where we have used the subscript R to denote &&Tikhonov regularized''. In this solution H is
the matrix of acoustic transfer functions relating the vector p of desired (or modelled)
acoustic pressures to the vector q of desired (or modelled) acoustic source strengths and p( is
the vector of measured acoustic pressures. The regularization parameter is denoted by b.
Similarly, we showed that for acoustic sources having a stationary random time history, the
Tikhonov regularized solution for the source strength cross-spectral matrix could be
written as

S
qqR

"M(HHH#bI)~1HH)SpL pL M(HHH#bI)~1HHNH, (2)

where SpL pL is the matrix of cross-spectra of measured acoustic pressures. In this paper, we
"rst describe established techniques for choosing b in the solution for source strength
given by equation (1). We then proceed to apply the same techniques to the solution given
by equation (2) on the grounds that a good solution for q

R
will lead to a good solution

or S
qqR

.
In applying Tikhonov regularization, we have to consider two factors: the manner by

which the result should be regularized and the amount of regularization. The method of
regularization will be determined by the choice of &&regularization operator'' which here is
chosen as the identity matrix I, although this can be replaced by a number of linear matrix
operators. Also, the degree of regularization is determined by the regularization parameter
b. We shall here concentrate on only the method for choosing the regularization parameter.
Further discussion regarding the choice of the regularization operator is given in reference
[3]. The choice of a good value of regularization parameter in Tikhonov regularization has
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received a great deal of attention [2}8]. Here we will introduce some established methods
with the modi"cations necessary to enable them to be oriented towards our problem. In
order to compare these methods we will use a simple measure of mean square error between
the desired solution q and the regularized solution q

R
(b). This is de"ned by

MSE(b)"E[Eq!q
R
(b)E2]. (3)

Similarly, in reconstructing cross-spectra we can consider the residual between the true
value S

qq
and the regularized solution given by

R
qq

(b)"ES
qq
!S

qqR
(b)E

e
, (4)

where E E
e
denotes the Euclidean norm of a matrix. Obviously, the choice of b that could be

considered optimal would minimize these functions, but these of course cannot be
computed in practice without prior knowledge of q or S

qq
[3].

2.2. ORDINARY CROSS-VALIDATION

Several methods not requiring prior knowledge of either of the value to be restored or the
noise have been proposed in determining the regularization parameter, such as the cross-
validation technique [4], the generalized cross-validation technique [2], the L-curve
method [7], and the maximum likelihood method [8]. However, here we focus on the use of
the cross-validation technique and the generalized cross-validation technique. Allen [4]
proposed a method, called Allen1s PRESS (which stands for predicted sum of squares), in
order to select a good ridge parameter in ridge regression analysis. This parameter is
tantamount to the regularization parameter in our problem. This method usually referred
to as the ordinary cross-validation (OCV) technique. This was also suggested by Wahba
and Wold [9] in the context of smoothing splines. This is a widely recognized method in the
"eld of statistical data analysis.

The essence of the method, when viewed in the current context, is to "rst "nd the vector of
complex acoustic source strengths q

R
(b, k) which minimizes the cost function

J (b, k)"
M
+

m/1
mOk

[pL
m
!p

m
]2#bqHq, (5)

which is the usual cost function for minimization as described in reference [1], but with the
kth values of measured and modelled pressures (pL

k
and p

k
) omitted from the calculation. (In

this sense the ordinary cross-validation technique is also sometimes referred to as &&the
leaving-one-out method''.) Having arrived at the source strength vector q

R
(b, k) that

minimizes this function, we then evaluate the e!ectiveness of this vector in predicting the
value of the measured pressure pL

k
that was &&left out'' of the calculation of the cost function.

We denote the predicted value of pL
k
by p

k
(b, k) which is the kth component of Hq

R
(b, k). The

ordinary cross-validation function <
0
(b) is then de"ned in order to measure the success of

this prediction when the &&leaving-one-out'' process is repeated for all the available data
points pL

k
(i.e., for k"1 to M). The ordinary cross-validation function is thus de"ned by

<
0
(b)"

1

M

M
+
k/1

[pL
k
!p

k
(b, k)]2. (6)
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The value of b which leads to the minimization of this function is then deemed &&optimal''; it
is the value of the regularization parameter b which ensures the best prediction of each of
the measured pressures from knowledge of all the other measured pressures.

A notationally convenient means for expressing this cost function can also be developed
by following the procedure presented by Craven and Wahba [10]. One "rst has to recognize
that the solution to the minimization of J (b, k) can be found by solving the full M-point
minimization problem but with the data point pL

k
given by the kth component of the solution

to the problem, i.e., we set pL
k
"p

k
(b, k). A rigorous proof of this observation is given by

Craven and Wahba [10]. Here we illustrate this method of approach and write the cost
function given by equation (5) as

J (b, k)"[p( (k)!p]H[p( (k)!p]#bqHq, (7)

where the vector of measured pressures p( (k) is given by

p( T(k)"[pL
1
pL
2
2 pL

k~1
p
k
(b, k)pL

k`1
2pL

M
]. (8)

The solution for the source strength vector q
R
(b, k) that minimizes this function is given by

q
R
(b, k)"(HHH#bI)~1HHp; (k). (9)

Thus, we can write the vector of estimated pressures that minimize J (b, k) as

p (b, k)"Hq
R
(b, k)"H(HHH#bI)~1HHp; (k)"B (b)p; (k), (10)

where the matrix B(b) (the &&in#uence matrix'') is given by H (HHH#bI)~1HH. This
relationship, when written in full, thus takes the form

p
1
(b, k)

p
2
(b, k)
F

p
k
(b, k)
F

p
M

(b, k)

"

b
11

b
12

2 b
1M

b
21

b
22

2 b
2M

F F F
b
k1

b
k2

2 b
kM

F F F
b
M1

b
M2

2 b
MM

pL
1

pL
2
F

p
k
(b, k)
F

pL
M

. (11)

where b
ij

are the components of matrix B (b). Now note that the solution to the M-point
minimization problem with no changes made to the vector of measured pressures p; can be
written as

q
R
(b)"(HHH#bI)~1HHp( (12)

and thus the corresponding set of estimated pressures can be written as p(b)"
Hq

R
(b)"B (b)p; . When written in full, this relationship can be expressed as

p
1
(b)

p
2
(b)
F

p
k
(b)
F

p
M

(b)

"

b
11

b
12

2 b
1M

b
21

b
22

2 b
2M

F F F
b
k1

b
k2

2 b
kM

F F F
b
M1

b
M2

2 b
MM

pL
1

pL
2
F
pL
k
F

pL
M

. (13)
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From the above two matrix expressions we can derive a relationship between p
k
(b, k) and

p
k
(b). It follows that

p
k
(b, k)"b

k1
pL
1
#b

k2
pL
2
#2#b

kk
p
k
(b, k)#2#b

kM
pL
M

(14)

and also that

p
k
(b)"b

k1
pL
1
#b

k2
pL
2
#2#b

kk
pL
k
#2#b

kM
pL
M

. (15)

Taking the di!erence between these two equations then shows that

(1!b
kk

)p
k
(b, k)"p

k
(b)!b

kk
pL
k
. (16)

It therefore follows, after some algebra, that

pL
k
!p

k
(b, k)"

pL
k
!p

k
(b)

1!b
kk

. (17)

This enables the expressions for the ordinary cross-validation function <
0
(b) given by

equation (6) to be written as

<
0
(b)"

1

M

M
+
k/1
C
(pL

k
!p

k
(b))

(1!b
kk

) D
2
. (18)

Note also that since p(b)"Hq
R
(b)"B (b)p; then we may write this expression as

<
0
(b)"

1

M
EC (I!B (b))p; E2

e
, (19)

where C is the diagonal matrix whose entries are also given by 1/(1!b
kk
). Note that<

0
(b) is

not a function of either the source strength to be restored or the noise but a function of only
H the assumed transfer function matrix, p( the measured pressure vector, and, of course,
b the regularization parameter. We denote the value of b that minimizes the function <

0
(b)

by b
OCV

.

2.3. GENERALIZED CROSS-VALIDATION

It was pointed out by Golub et al. [2] that the ordinary cross-validation technique
described above may be expected to fail in cases where the matrix B (b) is close to diagonal.
It is clear that if B (b) is diagonal, then the cross-validation function <

0
(b) given above

reduces simply to (1/M) Ep; E2
e

(i.e., 1/M times the sum of squared measured pressures) which
is entirely independent of the choice of b. This shortcoming led Golub et al. [2] to suggest
the use of &&generalized cross-validation'' (GCV) which follows from their argument that any
good choice of b should be &&invariant under rotation of the measurement co-ordinate
system''. Here we follow the analysis put forward by Golub et al. in deriving the GCV
function appropriate to the case considered here.

Firstly, we employ the singular value decomposition (SVD) of the matrix H [1] to write
the relationship p("Hq#e in the form

p;"URVHq#e (20)
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and since the unitary matrix U has the property UHU"I, then pre-multiplication of this
equation by UH results in

UHp;"RVHq#UHe. (21)

Note that this equation describes the relationship between the &&transformed'' pressure
p8 "UHp; and the &&transformed'' source strength q8 "VHq as described in reference [1]. This
equation is further transformed by pre-multiplication by the matrix W which has the ikth
entry given by

=
ik
"

1

JM
e2n+ik@M, i, k"1, 2,2,M, (22)

where j"J!1. The matrix W is a unitary matrix (WHW"I) and has the e!ect of
applying a discrete Fourier transform to the vectors UHp; , etc. appearing in equation (21).
This then becomes

WUHp;"WRVHq#WUHe. (23)

The transformed model is thus written as

p;
trans

"H
trans

q
trans

#e
trans

, (24)

where p
trans

"WUHp; is the vector of transformed measured pressures, q
trans

"WVHq is the
vector of transformed source strengths, e

trans
"WUHe is the vector of transformed noise

components and H
trans

"WRWH.
The procedure adopted by Golub et al. is then to apply ordinary cross-validation to this

transformed model. Firstly, the transformed in#uence matrix B
trans

is de"ned by
H

trans
(HH

trans
H

trans
#bI)~1HH

trans
and p(

trans
is substituted into the expression for the ordinary

cross-validation function given by equation (19). Noting that B
trans

is a circulant matrix [11]
and thus constant down the diagonals then shows that the generalized cross-validation
function can be written as

<(b)"
(1/M)E (I!B

trans
)p;

trans
E2
e

[(1/M)Tr(I!B
trans

)]2
, (25)

where Tr denotes the trace (sum of diagonal entries) of a matrix. By expressing<(b) in terms
of the eigenvalues of B

trans
and noting that these are the same as the eigenvalues of B (b) (see

Golub et al. [2]) also shows that the generalized cross-validation function can be written as

<(b)"
(1/M)EI!B (b))p; E2

e
[(1/M)Tr(I!B (b))]2

. (26)

Furthermore, it can be shown [12] that <(b) is a weighted version of the ordinary
cross-validation function <

0
(b) (equation (6)) such that

<(b)"
1

M

M
+
k/1
C
(pL

k
!p

k
(b))

(1!b
kk

) D
2

w
kk

, (27)

where

w
kk
"A

(1!b
kk

)

1!(1/M) Tr B (b)B
2
. (28)
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Note that the term (1/M)Tr B (b) evaluates the average of the sum of all diagonal elements of
the in#uence matrix B (b). Thus, the weighting factor w

kk
(b) represents the contribution of

each diagonal element relative to the sum of all diagonal elements of B(b). The generalized
cross-validatory choice of the regularization parameter b

GCV
is made by minimizing the

function < (b). Also note that when B is a circulant matrix (i.e., when H is circulant), <(b)
is identical to <

0
(b) since in this case w

kk
"1. Finally, consider the denominator

and numerator of the function < (b). The denominator is given by [(1/M)Tr[I!H
(HHH#bI)~1HH]]2 and thus evaluates the perturbation in the matrix HHH caused by the
presence of regularization parameter in improving the conditioning of the matrix HHH. As
b is increased, the denominator will become progressively smaller than unity, thus tending
to increase <(b). Also, the numerator is given by (1/M)Ep;!Hq

R
(b)E2

e
and thus represents

the residual sum of squares. Therefore, the function < (b) evaluates both the error in the
solution and the inaccuracy introduced into the matrix to be inverted by the inclusion of the
regularization parameter.

In closing this section it should be mentioned that the GCV technique does not always
produce satisfactory results. Some workers have made cautionary remarks as to the use
of this technique. Wahba [12] stated that the GCV was quite likely to produce an
unsatisfactory result if the noise components contaminating the measured data are highly
correlated. This is a re#ection of the basic assumption regarding the noise made at the
starting point of the derivation of <(b) [2], in which the noise components are assumed to
be independent and identically distributed, with zero mean and the same variance. In
addition, from a simulation study, Thompson et al. [13] showed some empirical evidence of
the possibilities for the unsatisfactory choice of the regularization parameter when the GCV
technique is employed. They stated that the potential problems with the < (b) function fall
into one or a combination of the following groups:<(b) with multiple minima,<(b) with no
minimum for b'0,< (b) for which it is hard to locate the global minimum numerically, and
<(b) whose global minimum produces an unsatisfactory b

GCV
. It is therefore desirable to

bear these points in mind when using the GCV technique.

2.4. AN EXAMPLE OF THE APPLICATION OF CROSS-VALIDATION TECHNIQUES

By way of introduction to the use of these techniques, we illustrate their use with a simple
model (Figure 1). This consists of a line array of nine-point monopole sources and a line
array of nine microphones. It is assumed that only the source located centrally has unit
volume velocity (say 1 m3/s) and 10% measurement noise is added to acoustic pressures
sensed at the microphones. The graphs of Figure 2 show the values of functions MSE (b),
<
0
(b) and <(b) de"ned by equations (3), (19) and (26) plotted against the regularization

parameters for the cases in which the source-to-microphone distance (r
ms

) is di!erent. The
"rst row in Figure 2 shows the results of the simulation when the microphone array is
placed very close to the source array (r

ms
"0)5r

ss
). As a consequence, the problem is very

well conditioned and there is no real need for regularization and MSE(b) is in any case very
small. The second, third and fourth rows show the results as the microphone array is moved
progressively further away from the source array (r

ms
"2r

ss
, 3r

ss
, 30r

ss
) and in these cases,

clear minima are observed in the functions<
0
(b) and<(b) (corresponding roughly to values

of b of 10~3, 10~4 and 10~5). In all three cases, the values of b that minimize<(b) are similar
to those that minimize <

0
(b). In none of the cases is there a clear correspondence between

the behaviour of MSE (b) with <(b) and <
0
(b), although in the second and third rows of

results MSE(b) obviously increases once the optimal values of b exceeded.



Figure 1. A geometrical arrangement of nine point monopole sources and nine microphones.
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It is of course impossible to draw general conclusions from the results of this illustrative
simulation, but it does at least demonstrate that for the type of case considered here, clear
minima of <

0
(b) and < (b) do exist and that the values deduced have the correct order of

magnitude. Again, although in these cases there are no clear di!erences between the
behaviour of <

0
(b) and < (b), we shall generally continue to use the generalized cross-

validation function <(b) since its superiority has been thoroughly argued by other workers
[2,10]. Furthermore, we will demonstrate with the experimental results presented below,
that the use of the GCV function<(b) is highly e!ective in restoring the strength of acoustic
sources when the inverse problem is badly conditioned.

2.5. ALGORITHMS FOR DETERMINATION OF OPTIMAL REGULARIZATION PARAMETERS

Finally, note that we can also use the function <(b) in order to reconstruct source
strength auto- and cross-spectra on the grounds that a regularization parameter producing
a satisfactory recovery of q should also yield a good reconstruction of S

qq
. Accordingly, after

estimating the regularization parameter based on the minimization of the function <(b)
given by equation (26), we substitute this into equation (2). In order to compare the results
of the application of GCV to the determination of the optimally regularized solution, we use
the algorithm depicted in Figure 3 in order to determine the minimum of R

qq
de"ned in

equation (4). We also employ the procedure shown in Figure 4 as an algorithm for
identifying b

GCV
. This procedure is similar to that providing b

qq
of Figure 3. We "rst read

H(u) and p; (u) at the lower frequency u
l
of interest. Then the "rst trial regularization

parameter is given by the initial weight =
i
multiplied by the minimum singular value of

HHH. Using these data, the value of the generalized cross-validation function < (b) is
computed. After that, < (b) is recursively computed by successively changing the value of
weight= by a suitable stepsize D= from the initial value=

i
to the "nal value=

f
. From

the values of <(b), we "nd a particular b which produces the minimum < (b). At this point,
the value b becomes the regularization parameter b

GCV
which we wish to identify. Using the

selected b
GCV

, we eventually obtain S
qqR

. This process is repeated until the upper frequency
u

u
of interest.



Figure 2. Comparison of (a) MSE (b), (b) <
0
(b) and (c) < (b) for the model of Figure 1: r

ms
"0)5r

ss
(the 1st row),

2r
ss

(the 2nd row), 3r
ss

(the 3rd row), 30r
ss

(the 4th row), r
ss
"0)1 m.
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3. USE OF GENERALIZED CROSS-VALIDATION FOR SINGULAR VALUE
DISCARDING

3.1. INTRODUCTION

The singular value discarded solution estimating the vector of acoustic source strength is
given by [1]

q
D
"H`

D
p;"(VR`

D
UH)p; , (29)

where U and V are the matrices consisting of the left and right singular vectors of H, R
D

is
the matrix of singular values remaining after discarding some singular values, the
superscript ` denotes the pseudo-inverse, and H

D
"UR

D
VH. Note that it is also possible to



Figure 3. A method of "nding the regularization parameter b
qq

by minimizing the residual R
qq

(u, b) between the
desired solution S

qq
and the regularized solution S

qqR
.

Figure 4. A method of "nding the regularization parameter b
GCV

by minimizing the generalized cross-validation
function < (b).
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construct the cross-spectral matrix of acoustic source strengths from the expression

S
qqD

"H`
D
SpL pL (H`

D
)H"(VR`

D
UH)SpL pL (VR`

D
UH)H. (30)

In connection with the determination of the singular values to be truncated, some
researchers suggest that it is suitable to discard the singular values below &&machine epsilon''
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(as pointed out by Rothwell and Drachman [14], for example). However, it is important to
recognize the fact that the conditioning of the matrix to be inverted is determined by not
the absolute magnitudes of the singular values but the ratio of the largest to the
smallest singular value. Poor conditioning can arise even if the smallest singular
value is much larger than machine epsilon. It is therefore clear that this guide is
not desirable. Powell and Seering [15] used the singular value discarding method
when researching the problem of identifying multiple input forces (which served as
sources of structural vibration) from multiple vibration measurements and the transfer
functions between forces and vibration signals. In this study they rejected the singular
values smaller than the error computed from coherence functions in association with the
frequency response measurements. More recently, Krzanowski and Kline [16] proposed
a way of determining the number of signi"cant components in principal component
analysis [17] by the use of the cross-validation technique. The principal components of
principal component analysis are the same as the singular values of singular value
decomposition. In this sense, the cross-validation technique used to determine the
signi"cant principal components can be applied to deciding the singular values to be
eliminated in our problem.

3.2. APPLICATION OF GENERALIZED CROSS-VALIDATION

Another way to determine the singular values to be removed is through the use of GCV
which was also used in choosing a good Tikhonov regularization parameter (section 2).
Golub et al. [2] proposed the adoption of the GCV technique as a tool for choosing
the signi"cant principal components in association with principal component analysis.
Consider the SVD of the (M]N) matrix H, i.e., H"URVH in which U is of order (M]M),
R is (M]N), and V is (N]N). From this matrix H, a matrix H"UR

V
VH is constructed in

which R
V

is the (M]N) diagonal matrix consisting of the "rst to the vth non-zero singular
values of H (the (v#1)th to the Nth singular values are set to zero). Thus,

R
v
"

s
1

s
2

0
}

s
v

0
0 }

0.............................................
0

H (v]N)

H (N]N)

N (M!N)]N
H (M]N). (31)

Based on this matrix H
v
, we construct a matrix B

v
de"ned by

B
v
"H

v
(HH

v
H

v
)`HH

v
. (32)

Note that the matrix B
v
is similar to the in#uence matrix B(b) which was used in association

with the determination of the regularization parameter b
GCV

. Use of the SVD of H
v
shows

that we can write this expression in the form

B
v
"UI

v
UH, (33)
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where the matrix I
v
is given by

I
v
"R

v
(RH

v
R
v
)`RH

v

1
1 0

}
1

0
" }

0
..................................................................................

0 0
}

0

H(v]N)

H (N]N)

H (M]M).

(34)

Note in this equation that the (N#1)th to the Mth diagonal components are originally zeros,
because H is an (M]N) rectangular matrix and thus its singular value matrix R has
(M!N)]N zero components as shown in equation (31). (For the case of an (M]M) square
H matrix, there are no (M!N)]N zero components). Finally, de"ne a function <

v
of B

v
as

<
v
"

(1/M)E[I!B
v
]p; E2

e
[(1/M)Tr[I!B

v
]]2

, (35)

which is the same with <(b) given by equation (26) except that B
v
is used instead of B (b).

Golub et al. [2] suggested that the signi"cant principal components could be decided by
choosing B

v
for which <

v
was smallest. According to this idea, we can apply the GCV

technique to the determination of the singular values to be eliminated in our problem. That
is to say, we can discard some singular values as follows. At "rst we calculate the value of
<
v
by using B

v
in which all diagonal components of I

v
are unity except the Nth diagonal

component set equal to zero. Then the same calculation is undertaken again by using
another B

v
where the (N!1)th and Nth diagonal components of I

v
are replaced by zeros.

This process is repeated up to the case of B
v

in which the third to the Nth diagonal
components of I

v
are set to zero. After that, among the calculated values (i.e., N!2) of <

v
,

we "nd the minimum. Finally, the number of the smallest singular values to be discarded
from the matrix H is made equal to the number of zeros contained in the "rst to the Nth
diagonal components of the matrix I

v
associated with the minimum value of <

v
. Also note

that using the properties of trace of the matrix [11], we can express
Tr[I!B

v
]"Tr[I]!Tr[B

v
], Tr[I]"M (where I is M-dimensional identity matrix), and

Tr[B
v
]"Tr[UI

v
UH]"Tr[I

v
UHU]"Tr[I

v
]"v. Thus, equation (35) can be written as

<
v
"

(1/M)E[I!B
v
]p; E2

e
[1!v/M]2

. (36)

The denominator of this expression evaluates the inaccuracy caused by discarding singular
values to improve the conditioning of matrix H. Also, the numerator evaluates the residual
sum of squares produced by the perturbation in the matrix H, since this is given by
(1/M)E[I!H

v
(HH

v
H

v
)`HH

v
]p; E2

e
. It is therefore clear that the function <

v
determines the
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singular values to be discarded by considering both these factors in a similar way to the
GCV function above.

Another possible discarding technique is based on the singular value distribution. That is
to say, the determination of the singular values to be removed is made simply by looking
into the relative magnitude of the singular values. Thus, this method demands empirical
experience to some extent. This utilizes only the singular value distribution obtainable from
the transfer function matrix H. We will refer to this as the singular value distribution based
discarding technique and denote the matrix H

D
as the matrix to be inverted once a number

of singular values have been discarded.
Before undertaking the experiments described below, a number of further simulations

were undertaken in order to establish the feasibility of using the above techniques in
practice. This work is described in detail in reference [18]. It was concluded that the
GCV technique provided a very useful method for the determination of the Tikhonov
regularization parameter and for the determination of the singular values to be discarded.
This is also con"rmed by the experiments described below.

4. EXPERIMENTS ON THE RECONSTRUCTION OF THE VELOCITY
OF A RANDOMLY VIBRATING PLATE

4.1. EXPERIMENTAL APPARATUS

The experiments were performed on a simply supported plate mounted in a "nite ba%e.
Full details of the work are presented in reference [19]. The simply supported boundary
condition implies no transverse displacement of the plate edges, although their rotation is
permitted. This boundary condition is replicated approximately by the use of shims at the
edges of the plate. These are sti! for inplane motion but #exible for rotation. Figure 5 shows
the design of the plate. Fifty holes are tapped for 12BA screws with 0)027 m spacing into
four edges of an aluminium plate 0)38 m long, 0)3 m wide and 0)0025 m thick. Four shims of
0)10]10~3 mm thick are fabricated into the four edges of the plate through these tapped
holes. The aluminium plate and shims fabricated together are fastened to a heavy, very sti!
0)02 m thick steel frame. The inside dimension of the steel frame is 0)38 m long and 0)3 m
wide which are precisely the same dimensions as the aluminium plate. Four steel clamping
bars 0)01 m thick were used to "rmly clamp four shims to the four inside surfaces of the steel
frame. The dimensions of the steel frame and clamping were chosen not to produce
substructure resonances when the plate is excited. The fabricated simply supported
aluminium plate system consisting of plate, shims, steel frame and clamping bars is mounted
on a medium density "breboard (MDF) support box. The simply supported plate system is
placed in the centre of a rigid MDF ba%e which is 3 m high, 2)8 m wide and 0)012m thick.
In addition, for further reduction of the acoustic interference between the front and rear
"eld of the ba%e, an MDF box containing sound absorbent material was made and
fastened against the steel main frame via toggle clamps.

The plate was excited by an electromagnetic driver consisting of a coil wound around
a core and a permanent magnet. The core of the electromagnetic driver is attached to the
rear part of the plate which is not coincident with the nodal lines of many structural modes
of interest. This electromagnetic driver generates a force by passing an alternating current
through the coil. A random noise signal is used to excite the driver and the force generated is
input to the plate. In addition, it was ensured that the mechanical input impedance of the
driving system did not exceed the impedance of the plate itself below the frequency of
interest. This ensured that the dynamic properties of the plate were not changed.



Figure 5. An experimental implementation of a ba%ed simply supported plate.
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The radiated acoustic "eld is measured by a microphone array supported by a scanning
system (see Figure 6) which adjusts the position of the microphone array. The scanner
comprises mainly a frame, a stepper motor and a controller, and operates as follows. Six
electret microphones are held on the microphone grippers "xed on the vertical aluminium
rods which are designed to enlarge the aperture size of the scanning area. The microphone
array locates automatically in the horizontal direction by a stepper motor attached to the
0)09 m thick aluminium frame whose dimension is of 1)09 m]1)39 m]0)8 m, and manually
in the vertical direction by screwing and unscrewing the vertical rods to the aluminium
frame. The stepper motor is controlled by the driver which is operated by the control card in
connection with the control software, Motion Architect [20] installed in the personal
computer. In acquiring pressures by a microphone array and surface velocities by an
accelerometer, the current of the coil was also simultaneously obtained to measure the force
input by the driving system into the plate. The input force data were used as a normalizer
for the pressures and volume velocities. That is to say, the transfer function between the
input force and pressures and volume velocities were obtained, instead of pressures and
volume velocities themselves. The input force was measured using a force transducer. This,



Figure 6. A schematic diagram and a photograph of the experimental set-up.

METHODS FOR CHOOSING REGULARIZATION PARAMETERS 683
however, caused a problem of signi"cant mechanical input impedance due to its mass
(0)02 kg) when compared to the impedance of the plate itself. To resolve this di$culty, a 1 X
resistor was connected with the coil cable in series and the voltage between two ends of the
resistor is measured. This voltage was therefore proportional to the current #owing in the
coil.

In order to evaluate how well the plate replicates the simply supported boundary
condition, the modal parameters such as natural frequencies, mode shapes and damping
ratios were extracted via a modal test. This was undertaken by the use of a small
accelerometer and an impact hammer. The experimental natural frequencies can be
compared with the theoretical values which are given in reference [21]. Figure 7 compares
the experimental and theoretical natural frequencies which were found to be in good
agreement. Also the mode shapes obtained experimentally were compared with those given
theoretically [21] and showed reasonably good agreement. The plate can thus be assumed
to give a satisfactory replication of the simply supported boundary condition.



Figure 7. A comparison of the theoretical and experimental natural frequencies of the simply supported plate.
Figures in the "rst parentheses denote the modal indices, and those in the second parentheses the theoretical and
experimental natural frequencies respectively.
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4.2. DIRECT MEASUREMENT OF THE VOLUME VELOCITY OF THE VIBRATING PLATE

To check how successfully the inverse technique reconstructs volume velocities
of a vibrating plate, we need data for comparison and these are obtained from direct
measurement. Thus, the direct measurement of volume velocity has to be made as
accurately as possible. A number of techniques can be employed for measurement of the
volume velocity including an accelerometer, a laser doppler velocimeter [22] or more
recently a volume velocity transducer [23]. Here we used the accelerometer.

If a plate vibrates as like a rigid piston moving in phase, volume velocity q is determined
by the expression

q"Sv
s
. (37)

where v
s
is the local surface velocity measured at any point on the plate and S is the plate

area. However, since the plate does not usually show a rigid piston-like motion, the plate
should be discretized into a number of small segments. Each segment is regarded as a rigid
piston moving in phase. The total volume velocity in this case is determined by the
summation of individual contributions of all segments and thus

q"
K
+
i/1

S
i
v
si
, (38)

where v
si

and S
i
are the volume velocity and area of the ith segment and K is the total

number of segments. It is straightforward to measure the volume velocities by use of
the accelerometer. However, a major shortcoming is the additional loading due to the
accelerometer attached to the plate, which can cause a change of the dynamic behaviour of
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the plate. For this reason, it was necessary to use an accelerometer that was as small as
possible. A comparison of the plate impedance and that of the point mass associated with
the accelerometer revealed that results should be reliable up to a frequency of around
1700 Hz [19]. In addition, in order to obtain the volume velocity at high frequencies as
accurately as possible, the number of measurement points should be su$cient to avoid
spatial aliasing.

The plate is thus divided into 144 (12]12) contiguous small rectangular segments of the
same area. Measurements of the surface velocities are then made at the individual centre
points of these segments. The volume velocity source consists of the combination of some
rectangular segments and then its strength is obtained by the summation of the surface
velocities of individual segments multiplied by the area of segment. The measurement of the
surface velocities is made by a calibrated accelerometer, which is in turn moved to the centre
points of the 144 small rectangular elements. The results of the directly measured volume
velocities will be presented in the ensuring sections, where these are compared with those
estimated by the inverse techniques.

5. EXPERIMENTAL RESULTS

5.1. EXPERIMENTAL RECONSTRUCTION BY THE LEAST-SQUARES METHOD

All experiments have been undertaken in the anechoic chamber (which is of dimensions
9)15 m]9)15 m]7)32 m) of the ISVR at the University of Southampton. Since the
condition number of the matrix to be inverted plays a crucial role, experiments are
conducted for the two main groups which have &&small'' or &&large'' condition number
(although, strictly speaking, there is not an explicit quantitative scale to distinguish between
small and large condition numbers). With the "rst group, we wish to explore how accurately
the simple least-squares solution is able to reconstruct volume velocity sources of the
randomly vibrating plate. The second group of experiments are used to investigate how
Tikhonov regularization and singular value discarding improve the reconstruction
accuracy.

In this section, we present the results of the "rst group of experiments. An initial
experiment is carried out for the system as shown in Figure 8. The plate is discretized into
four volume velocity sources each of which consists of 36 (6]6) of 144 small segments.
Four microphones are placed symmetrically with respect to the sources, setting the
microphone-to-microphone distance equal to the source-to-source distance (0)19 m in the
horizontal direction and 0)15 m in the vertical direction). Also the pattern of microphone
array is rectangular and the same as that of source array. This geometrical arrangement is
selected to make the condition number as small as possible, referring to the behaviour of the
condition number of HHH described in reference [1]. The condition number for this case is
shown in Figure 9 and is between 50}300, decreasing as frequency increases. In the
experiment using this model, the frequency to be analyzed is limited to 500 Hz. This is
because the discretized individual rectangular elements are regarded as equivalent point
monopole sources and therefore the requirement of the condition ka@1 has to be met (a is
the typical dimension of a source element, here a"¸

x
/4"0)38/4"0)095 m and k"u/c

0
is the wavenumber of sound in air at the frequency u). Some of the reconstructed
magnitudes and phases of acoustic source strength auto- and cross-spectra are presented in
Figure 10. They are in very good agreement with the directly measured values.

The next experiment was conducted for the plate model discretized into 16 volume
velocity sources as shown in Figure 11. Each volume velocity source of this model is clearly



Figure 8. A geometrical arrangement of the plate system discretized into four volume velocity sources and four
microphones.

Figure 9. Condition number i (HHH) of the model of Figure 8.
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smaller than that of the preceding experimental model. In this case, the frequency to be
analyzed can be expanded to 1000 Hz, based on ka@1 (here a"¸

x
/8"0)38/8"0)0475 m).

Since the source-to-source distance becomes smaller (i.e., 0)095 m in the horizontal direction
and 0)075 m in the vertical direction). Additionally, the 16 microphone array plane is put
close to the source array plane at distance of 0)046 m (and, of course, the microphone array
is placed symmetrically with respect to the source array). Such a placement makes the



Figure 10. A comparison of the directly measured (black) and reconstructed (by the least-squares solution, grey)
volume velocity (per unit ampere) auto-spectra of sources (a) 2, (b) 3 and cross-spectra between sources 2 and 3 ((c)
magnitude, (d) phase) for the model of Figure 8.

Figure 11. A geometrical arrangement of the plate system discretized into 16 volume velocity sources and 16
microphones.
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condition number below 300 (see Figure 12). Note that this condition number is very similar
to that of the model of Figure 8 (four sources and four microphones) in spite of the use of
more sources and microphones. The results of Figure 13 compare the reconstructed and
directly measured volume velocities for this experimental model. The reconstructed values



Figure 12. Condition number i (HHH) of the model of Figure 11.
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follow well the overall trend of the values measured directly up to 1000 Hz. However, the
results show a more noisy shape than previously (compare Figure 13 with Figure 10). This
is, as expected caused by acoustical re#ection from the microphone scanner put close to the
plate. Note that the magnitudes of acoustic source strength become smaller than those of
the case of the plate discretized into 4 volume velocity sources. The reason for this is that the
volume velocity of one source is obtained from the summation of surface velocities
multiplied by the area of the rectangular segments enclosed by the boundary of each volume
velocity source. Although the results are not shown here, a satisfactory reconstruction was
achieved [19] from another experiment using the plate discretized into six volume velocities
with the six appropriately placed microphones to produce a well-conditioned matrix to be
inverted.

The foregoing experiments are for the models in which the matrix HHH to be inverted
is well-conditioned. What if the conditioning becomes poor? Let us "rst consider the
experimental model depicted in Figure 14. Although this consists of four volume velocity
sources and four microphones, the condition number presented in Figure 15 is much larger
(i.e., 7]102}6]104) than that of Figure 9 which also comprises four volume velo-
city sources and four microphones. What is more, it is much larger than that of the
16 volume velocity source and 16 microphone model (Figure 12). The consequence of
this poor conditioning is a noisy and erroneous reconstruction, as can be seen from
Figure 16. In particular, a noticeable discrepancy appears below about 270 Hz in the
magnitude plots. This is caused by the relatively large condition number at these frequencies
compared to that at other frequencies where the overall trend of the inverse reconstruction
follows well the directly measured results. Also the phases are reconstructed with
deteriorated accuracy.

The next experiment was performed using six microphones instead of four microphones
for the same plate discretization as illustrated in Figure 17. Moreover, the microphone
array is moved further from the plate (to 1)02 m). This enables an investigation of the
e!ect of the worsened conditioning produced by the increase of the source array



Figure 13. A comparison of the directly measured (black) and reconstructed (by the simple least-squares
solution, grey) volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 11 and cross-spectra between
sources 1 and 11 ((c) magnitude, (d) phase) for the model of Figure 11.

Figure 14. A geometrical arrangement of the plate system discretized into four volume velocity sources and four
microphones.
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plane-to-microphone array plane distance. The condition number for this case can be
observed from Figure 18 and it is between 3]103 and 8]105. As a result of the enlarged
condition number, the magnitudes and phases of restored acoustic source strength deviate
signi"cantly from the directly measured values (Figure 19).



Figure 15. Condition number i (HHH) of the model of Figure 14.

Figure 16. A comparison of the directly measured (black) and reconstructed (by the least-squares solution, grey)
volume velocity (per unit ampere) auto-spectra of sources (a) 2, (b) 3 and cross-spectra between sources 2 and 3 ((c)
magnitude, (d) phase) for the model of Figure 14.
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Figure 17. A geometrical arrangement of the plate system discretized into four volume velocity sources and six
microphones.

Figure 18. Condition number i (HHH) of the model of Figure 17.
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Now let us reconsider the experimental model comprising 16 volume velocity sources and
16 microphones. As can be seen from Figure 20, we now enlarge the microphone-to-
microphone horizontal and vertical distances to 0)2 m from 0)075 and 0)095 m (Figure 11)
and the source array plane-to-microphone array plane distance to 0)661 m from 0)046 m,
but leaving the geometry of microphone array symmetric with respect to the volume
velocity source array. Such a positioning of microphones is directed towards increasing the



Figure 19. A comparison of the directly measured (black) and reconstructed (by the least-squares solution, grey)
volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 3 and cross-spectra between sources 1 and 3 ((c)
magnitude, (d) phase) for the model of Figure 17.

Figure 20. A geometrical arrangement of the plate system discretized into 16 volume velocity sources and 16
microphones.
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condition number, i.e., 6]106}1)5]109, as plotted in Figure 21. This is because the ratio of
the microphone-to-microphone distance to the source-to-source distance is not close to
unity (say, 0)2/(0)3/4)"2)7 and 0)2/(0)38/4)"2)1 in the vertical and horizontal direction,
respectively), and furthermore the microphone array is positioned far from the plate



Figure 21. Condition number i (HHH) of the model of Figure 20.

Figure 22. A comparison of the directly measured (black) and reconstructed (by the simple least-squares
solution, grey) volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 11 and cross-spectra between
sources 1 and 11 ((c) magnitude, (d) phase) for the model of Figure 20.
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compared to the source-to-source distance. With this poor conditioning, the simple least-
squares approach cannot help but restore acoustic source strength very inaccurately. From
the overall point of view, as plotted in Figure 22, the reconstructed magnitudes reveal
a biased pattern from the directly measured values, even though the peaks at resonant
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frequencies can be seen. The restored phases also are in substantial disagreement with the
directly measured values.

As observed from the above results, it is easily recognized that the essence of the
successful reconstruction of acoustic source strength by the simple least-squares method lies
on keeping the condition number as small as possible by adjusting the geometrical
arrangement of discretized sources and microphones, as long as the experimental
environment is su$cient to suppress the strong e!ect of noise. Also, even though it is not
straightforward to express quantitatively the boundary of the large and small condition
numbers, a rough guide can be extracted for the case examined here. The above results
suggest that if the condition number of the matrix HHH to be inverted is below about 103,
then the least-squares method can provide a satisfactory reconstruction, without using
regularization methods.

5.2. EXPERIMENTAL RECONSTRUCTION BY TIKHONOV REGULARIZATION

Here we discuss how Tikhonov regularization improves the accuracy of acoustic source
strength of the models (Figures 17 and 20) reconstructed poorly by the least-squares method
alone. For the regularization parameters, we use b

qq
which is found by minimizing the

residual ES
qq
!S

qqR
E
e

between the desired solution S
qq

and the Tikhonov regularized
solution S

qqR
, and b

GCV
which is the minimizer of the generalized cross-validation function

<(b). Although the regularization parameter b
qq

can be chosen only when having prior
knowledge of either the volume velocity or the noise, this is used here as a comparator to
check the performance of b

GCV
which is determined without such prior knowledge.

Tikhonov regularization is "rst applied to the experimental model consisting of
4 discretized sources and 6 microphones illustrated in Figure 17. In this case the
least-squares approach could not produce a satisfactory reconstruction (Figure 19). For this
model, we designed the regularization parameters b

qq
and b

GCV
by following the procedure

given by Figures 3 and 4 respectively. The result of Figure 23 compares the two
Figure 23. Regularization parameters for the model of Figure 17: b
qq

(black) and b
GCV

(grey). a"¸
x
/4,

¸
x
"0)38 m.



Figure 24. Condition numbers for the model of Figure 17: i(HHH) (thick black), i (HHH#b
qq

I) (thin black) and
i(HHH#b

GCV
I) (grey). a"¸

x
/4, ¸

x
"0)38 m.
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regularization parameters. They show that the overall trend with frequency is similar
to each other, but of course their absolute values are rather di!erent. In this "gure,
the values at some frequencies (say, about 400}500 Hz) indicate that no regularization
is recommended because the volume velocities recovered by the least-squares solution
at these frequencies are close to the desired values (see Figure 19). The addition of b

qq
and b

GCV
into the diagonal components of the original matrix HHH (see equation (2))

improves the conditioning, as graphed in Figure 24. In particular, at frequencies
below about 400 Hz the matrix becomes better conditioned where the least-squares
method restored acoustic source strength poorly (see Figure 19). As the result of the
improvement of the conditioning from i (HHH) to i (HHH#b

qq
I) or i (HHH#b

GCV
I), the

Tikhonov regularized solution expressed by equation (2) enhances the accuracy of
reconstruction of the magnitudes of volume velocities, as illustrated in Figure 25. As
expected, since the values of b

qq
and b

GCV
are also similar, the acoustic source strengths

recovered by use of b
qq

and b
GCV

are similar. Re#ecting on the fact that b
GCV

is determined
without a priori knowledge of either the volume velocity or the noise, we can see that the
GCV technique is a practical tool to improve the accuracy of reconstruction of volume
velocities. However, as can be seen from Figure 25, Tikhonov regularization by use of either
b
qq

or b
GCV

still produces unsatisfactory reconstruction of the phases of the volume velocity
cross-spectra between the discretized sources.

The next application of Tikhonov regularization was performed on the experimental
model consisting of the plate discretized into 16 volume velocity sources and 16
microphones as shown in Figure 20. The results shown in Figure 26 compares two
regularization parameters b

qq
and b

GCV
chosen by following the steps presented in Figures

3 and 4. The overall trend is similar in each case, as observed previously. The use of these
parameters reduces the original condition number i (HHH) into i(HHH#b

qq
I) and

i(HHH#b
GCV

I) (approximately 10~5 times), as illustrated in Figure 27. The condition
numbers of the regularized matrices to be inverted are below 104 up to about 500 Hz and
below 103 beyond this frequency. Recall that for the experimental model having the



Figure 25. Volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 3: desired (thick black),
unregularized (thin grey), regularized by b

qq
(thin black), regularised by b

GCV
(thick grey). (c) Phase of cross-spectra

between sources 1 and 3 for the model of Figure 17.
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Figure 26. Regularization parameters for the model of Figure 20: b
qq

(black) and b
GCV

(grey). a"¸
x
/8,

¸
x
"0)38 m.

Figure 27. Condition numbers for the model of Figure 20: i (HHH) (thick black), i(HHH#b
qq

I) (thin black) and
i(HHH#b

GCV
I) (grey). a"¸

x
/8, ¸

x
"0)38 m.
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condition number below 103, the least-squares solution produced a satisfactory
reconstruction (see Figures 8}13). With the conditioning improved, the in#uence of the
noise is diminished so e!ectively that Tikhonov regularized solution using b

qq
or

b
GCV

reconstructs very remarkably the magnitudes of volume velocities (Figure 28). Note
that the magnitudes of volume velocities restored by b

GCV
are very akin to those recovered

by b
qq

. However, the phase reconstruction is again unsatisfactory.



Figure 28. Volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 11: desired (thick black),
unregularized (thin grey), regularized by b

qq
(thin black), regularized by b

GCV
(thick grey). (c) Phase of cross-spectra

between sources 1 and 11 for the model of Figure 20.
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5.3. EXPERIMENTAL RECONSTRUCTION BY SINGULAR VALUE DISCARDING

Singular value discarding is now performed for the experimental models to which
Tikhonov regularization has been applied in the previous section. The "rst application is
used with the model of Figure 17 in which the plate is discretized into four sources and six
microphones are employed. Shown in Figure 29 are the singular values of the transfer
function matrix H to be inverted. Their distribution with frequency shows clearly why the
conditioning of this model is poor at low frequencies (see Figure 18). Note that the
dimensions of H for this model are 6-by-4 and thus there are four singular values. In order
to improve the conditioning, we discard some singular values by either the singular value
distribution based discarding technique or the generalized cross-validation technique as
discussed in section 3. At "rst, from the singular value distribution presented in Figure 29,
the last singular value is removed for frequencies below 400 Hz. As a result, the conditioning
of the matrix to be inverted is improved from i(H) to i (H

D
) as illustrated in Figure 30. In

this "gure, the overlapping of two lines of i (H) and i (H
D
) beyond 400 Hz indicates no

change of conditioning because no singular value was discarded. Another elimination of
some singular values is made by using the generalized cross-validation function <

v
de"ned

in section 3. Of the calculated values of the<
v
function, we select the minimum value. At this

point, if the associated I
v
producing the minimum <

v
has v unities from the "rst to the vth

element on its diagonal, then the (v#1)th to four singular values of the matrix H (m-by-n,
m*n) are truncated. Thus, the matrix H is transformed into H

v
. This is repeated at each

component of frequency to be analyzed. Figure 30 compares i (H
v
) with i (H

D
) and shows

that i(H
v
) follows i (H

D
) well, except beyond 400 Hz. In this "gure, i (H

v
)"i (H

D
) at many

frequencies signi"es that the minimum value of <
v

at those frequencies is achieved by
removing only the last (here the fourth) singular value (because i (H

D
) was obtained after

discarding the last singular value up to 400 Hz). The results of Figure 31 show some of the
reconstructed volume velocities. The magnitudes of volume velocities recovered by using
H

D
and H

v
approach the desired values very closely, compared to those achieved by the

simple least-squares method. Furthermore, since the levels of conditioning are similar, these
Figure 29. Singular values of the matrix H for the model of Figure 17. a"¸
x
/4, ¸

x
"0)38 m.



Figure 30. Condition numbers for the model of Figure 17: i(H) (thick black), i(H
D
) (thin black) and i (H

v
) (grey).

a"¸
x
/4, ¸

x
"0)38 m.
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two reconstructed results are similar. In contrast with the magnitude reconstruction, the
restored phases again show unsatisfactory results. In the meantime, comparing the results of
Figure 31 with Figure 25 reveals that the accuracy of reconstruction by singular value
discarding is similar to that given by Tikhonov regularization.

Now we will consider the experimental model given by Figure 20 which consists of
the plate discretized into 16 sources and 16 microphones. For this model, a plot of the
distribution of 16 singular values is presented in Figure 32. As in the previous case, the
choice of singular values to be discarded is made by two methods based on the singular
value distribution and generalized cross-validation function. Based on the singular value
distribution of Figure 32, we "rst partition the frequency range of interest, 90}1000 Hz, into
three zones: frequencies (500 Hz, 500 Hz)frequencies)600 Hz, and frequen-
cies'600 Hz. For each zone, the singular values less than 1]102, 2]102, and 3]102 are
truncated. Note that these values are chosen arbitrarily based on empirical experience. As
a result, the conditioning i(H) of the original matrix H to be inverted is enhanced by i(H

D
)

as plotted in Figure 33. Elimination of some singular values by using generalized
cross-validation is performed as in the previous case. However, since the dimension of I

v
of

this model is 16-by-16, the calculation of the <
v
function is repeated until the third to 16th

diagonal components of I
v

are replaced by zero. Plotted in Figure 33 is the condition
number of the matrix H

v
. Unlike the previous case of Figure 30, i (H

v
) is mostly di!erent

from i (H
D
) and shows a noisy pattern. The results of Figure 34 illustrate that the use of the

singular value discarded matrix H
D

instead of the original matrix H improves the accuracy
of reconstruction of the magnitudes of volume velocities which were restored badly by the
simple least-squares method alone. In contrast with this the use of H

v
reconstructs

the magnitudes of volume velocities unsatisfactorily, revealing a noisy shape. Needless to
say, this is in connection with i (H

v
) having a noisy pattern, which indicates that for this

model singular value discarding by minimizing the generalized cross-validation function
does not appear to work satisfactorily. For this model the phase recovery by both H

D
and

H
v

is poor.



Figure 31. Volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 3: desired (thick black),
undiscarded (thin grey), reconstructed by H

D
(thin black), reconstructed by H

v
(thick grey). (c) Phase of cross-

spectra between sources 1 and 3 for the model of Figure 17.
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Figure 32. Singular values of the matrix H for the model of Figure 20. a"¸
x
/8, ¸

x
"0)38 m.

Figure 33. Condition numbers for the model of Figure 20: i(H) (thick black), i(H
D
) (thin black) and i (H

v
) (grey).

a"¸
x
/8, ¸

x
"0)38 m.

702 S. H. YOON AND P. A. NELSON
From the experimental reconstruction results presented above, it has been observed that
the application of Tikhonov regularization or singular value discarding to an ill-
conditioned system can provide considerable improvement in accuracy of reconstruction.
Also, the GCV technique has been seen to be a practical tool for choosing properly the
regularization parameter and the singular values to be truncated. However, stress should be
laid on the fact that the GCV technique does not always lead to a successful choice of those
values. As could be seen, the GCV technique has chosen appropriately the regularization



Figure 34. Volume velocity (per unit ampere) auto-spectra of sources (a) 1, (b) 11: desired (thick black),
undiscarded (thin grey), reconstructed by H

D
(thin black), reconstructed by H

v
(thick grey). (c) Phase of cross-

spectra between sources 1 and 11 for the model of Figure 20.
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parameters and the singular values to be eliminated for most of the experimental models
considered up to now. However, this had not decided properly the singular values to be
eliminated for the 16 source and 16 microphone model. Accordingly, in applying the GCV
technique, we have to recall the cautionary remarks referred to section 2.
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6. CONCLUSIONS

Through a series of experiments using various models, the least-squares method has been
shown to be capable of reconstructing the volume velocities of a randomly vibrating simply
supported plate with good accuracy, when the conditioning of the matrix to be inverted is
made small. Although it is in general not straightforward to judge the boundary between
&&small'' and &&large'' condition numbers, the experimental results presented here suggest that
the condition number of the matrix HHH can be said to be small when this is below about
103. Tikhonov regularization using b

GCV
which is chosen by minimizing the generalized

cross-validation function improves considerably the poor accuracy of volume velocities
reconstructed by the least-squares method alone. These results have shown a similar trend
to those reconstructed by using b

qq
which is used as comparator to check the performance of

b
GCV

and is determined by minimizing the di!erence between the desired and estimated
volume velocities. However, the regularization parameters b

qq
and b

GCV
have also shown

unsatisfactory performance in improving the phases of volume velocity cross-spectra
reconstructed poorly by the least-squares method alone. Singular value discarding based on
the singular value distribution has shown that the volume velocity distributions and their
interactions can be reconstructed more approximately, compared to the values obtained by
only the simple least-squares method. On the contrary, singular value discarding using the
generalized cross-validation technique has revealed a model-dependent performance. This
is thought to be a limitation of the generalized cross-validation technique, which has been
already pointed out by some researchers.
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